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ABSTRACT

The localization of image splicing involves identifying pixels
in an image that have been spliced from other images, necessi-
tating the discernment of splicing features. Despite significant
advancements driven by the rise of social media and deep
learning, existing methods exhibit limitations, often neglect-
ing the integration of coarse and precise features and lacking
the ability to understand objects. This leads to erroneous pre-
dictions in identifying spliced regions. This paper proposes
Segment Anything Model with Integrated Compression and
Edge artifacts (SAM-ICE) for the localization of image splic-
ing, addressing these limitations by fusing forged edge features
and compression artifact features. Leveraging SAM’s object
understanding ability, our method identifies spliced regions
using the fused features as guidance. Specifically, we employ
Edge Artifact Extractor (EAE) to extract fine high-frequency
edge splicing features and Compression Artifact Extractor
(CAE) to extract coarse compression artifact features. By
combining these features, our method utilizes coarse-fine fea-
tures to accurately pinpoint the spliced portions of the image.
Experimental results demonstrate the superior accuracy, ro-
bustness, and generalizability of our method compared to the
state-of-the-arts.

Index Terms— Image Splicing, Forgery Localization,
Coarse-fine Feature Fusion, Edge Splicing Features, Com-
pression Artifacts
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Fig. 1: Motivation for locating image splicing. (a) depicts the
spliced image, (b) illustrates the coarse compression artifact,
(c) showcases the fine edge artifact, (d) demonstrates the fusion
of these two artifacts, and (e) reflects the ability of SAM to
understand objects. Through the fusion of these artifacts, the
method is directed to accurately and completely identify the
spliced region.

1. INTRODUCTION

Image forgery poses significant challenges across various
fields, e.g., law enforcement, journalism, and social media.
The advent of digital technology has revolutionized multiple
aspects of our lives, encompassing image creation and shar-
ing. However, this progress has concurrently given rise to a
novel form of deception known as image splicing forgery, sig-
nificantly undermining the trustworthiness of digital images.
Image splicing involves pasting a region from one image onto
another, prompting the need to precisely identify the tampered
regions in some forgery images. This is essential for tasks,
such as repairing the forgery image or other [1, 2, 3, 4] related
purposes.

To identify forgery region in spliced images, detecting
splicing traces and forgery features introduced by forgery
tools is crucial. Some methods have been proposed to cap-
ture image-specific features and locate forged regions. Huh
et al. [5] employ a self-consistency method to learn forgery



features. Similarly, Wu et al. [6] devise a self-supervised learn-
ing task for learning traces of image operations. Agrawal et
al. [7] locate the forged region by capturing the consistency
signature of the image. Kumar et al. [8] predict forged re-
gions by extracting salient key-points. Some methods predict
tampering positions through feature fusion. Kwon e al. [9]
employ a dual-channel HRNet to extract compression artifacts
and RGB features for locating forged positions. While these
methods can locate forged regions to some extent, they lack
object understanding and are insufficient in extracting forgery
feature types. Consequently, this leads to incomplete results
when splicing complex content.

As illustrated in Fig. 1(b), image compression leaves
artifacts in the spliced region, aiding in rough localization.
Through frequency domain analysis, we find that there are
high-frequency splicing artifacts in the spliced images, which
can precisely locate the splicing edge as Fig. 1(c). To leverage
both features, as shown in Fig. 1(d), we fuse them to iden-
tify spliced objects within the image. Notably, the Segment
Anything Model (SAM) [10] has exhibited robust object
understanding abilities, demonstrating strength in robustness
and generalization. Inspired by SAM’s success, we utilize its
ability of object understanding to fuse precise edge features
with coarse compressed features, facilitating accurate and
complete prediction of the splicing region as Fig. 1(e).

Building upon the aforementioned insights, we propose a
splicing prediction method, that Integrates Compression and
Edge artifacts features using SAM (SAM-ICE). To leverage
the edge features retained in the high-frequency region by the
forgery tool, we employ Fast Fourier Transform (FFT) [11] to
transform the image to frequency domain for locating precise
splicing contours, facilitating the extraction of forgery feature
frequencies. However, for images with smooth forgery bound-
aries, extracting useful forgery information from the image
frequency becomes challenging. Recognizing that the splicing
region may exhibit a different distribution of Discrete Cosine
Transform (DCT) coefficients in the Y -channel compared to
the authentic region [9], we utilize this characteristic to ex-
tract forgery features, Integrating these two features into SAM
allows us to predict the splicing region.

In summary, our main contributions are threefold:

* We extract coarse compression artifacts and fine splicing
artifacts, generate fused features through the combina-
tion of coarse and fine granularity features, and lead to
locate the splicing position.

* We propose Segment Anything Model with Integrated
Compression and Edge artifacts (SAM-ICE), guiding
at the feature level. The fused features are fed into
each layer of SAM for guidance and feature calibration.
To the best of our knowledge, we are the first to em-
ploy SAM for coarse-fine feature fusion in the splicing
forgery localization task.

» Experimental results demonstrate our superiority
overstate-of-the-art methods, excelling in locating
various splicing forgery features, even those unseen
during training.

2. PROPOSED METHOD

2.1. Framework Overview

As depicted in Fig. 2, we incorporate extracted edge arti-
fact and compression artifact features into every layer of
SAM [10]’s image encoder. This integration enables precise
identification of the splicing position, enhancing the method’s
effectiveness in learning.

2.2. Edge Artifact Extractor

To capture edge artifact information within the forged image,
we develop an Edge Artifact Extractor (EAE) utilizing Fourier
Transform to extract specific forgery details from frequency
domain of image [12].

We initiate the process by FF'T to transform the input
image If into frequency domain:

I, I; = FFTy, (Iy) M

where FFT},(-) denotes extracting of high-frequency compo-
nents from the image using FFT. I, and I; represent the real
and imaginary parts, respectively, after the Fourier transform.

Subsequently, the edge forgery features are extracted from
frequency domain through convolution:

F,, F; = Split (ReLU (BN (Conv (Concat (I, I;))))) ,
©))
where ReLU refers to Rectified Linear Unit function, BN sig-
nifies Batch Normalization operation, Conv represents Con-
volution operation, Concat(-) operation combines the two
tensors I, and I; together, and Split(-) splits the tensor into
two at the corresponding position. F;. and F; denote the real
and imaginary parts of the edge forgery feature extracted from
frequency domain, respectively.
Finally, we transform the edge forgery features acquired
in frequency domain back into the image space domain:

F, =iFFT (F,, F;), 3)

where iFFT(-) denotes inverse FFT, and F, represents final
extracted edge feature, which serves as the input to SAM [10].

2.3. Compression Artifact Extractor

Owing to the distribution difference between the forged image
region and the clean region, specific artifacts emerge. Conse-
quently, we employ a Compression Artifact Extractor (CAE)
to extract compression artifacts.
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Fig. 2: Proposed framework for image splicing localization. Compression artifact features and edge splicing features are
separately extracted from the spliced images. Subsequently, these two features are fused and fed into each layer of SAM.

Specifically, considering the substantial difference in
DCT distribution histogram [9] of the Y -channel between the
spliced and clean regions, we utilize Binarization (Bin) to
process DCT coefficients (D), simulating DCT distribution
histogram:

M = {17 onn D] =t
0, Otherwise,

where Clip;_r r(-) operation constrains values within the
range of —7"to T'. M represents result after Bin operation. 1,
J, and ¢ represent position index.

Subsequently, the obtained Bin undergo two Conv layers
to extract the forgery distribution artifact features:

F' = ReLU (BN (Conv (ReLU (BN (Convg (M)))))),
&)
where Conv, represents dilated convolution.

To simulate the compression process, we perform a Repe-
tition (Rep) the Quantization Table (QT) and multiply it with
F, followed by Concat with F' :

F, = Concat (F/,Rep (QT) F/) , (6)
where F, represents extracted artifact feature, which will be
utilized in the subsequent feature fusion process.

2.4. Forgery Feature Fusion

As aforementioned, we have obtained edge artifact features and
compression artifact features. The coarse-grained compression

artifact features offer an approximate localization of the forged
region, while the fine-grained edge artifact features exhibit
a superior localization effect along the edges of the forged
region. By integrating these two feature types, we aim to
achieve a more precise localization of the forged area.

To incorporate these extracted forgery feature information
into SAM [10], we will fuse these features and subsequently
feed them into each layer of image encoder of SAM. Specifi-
cally, we Concat the acquired edge artifact features and com-
pression artifact features to form the total feature. We then
employ Multilayer Perceptron (MLP) to extract the splicing
features F:

F; = MLP (Concat (F,, Fy)) . @)

Subsequently, Fy is input into each layer of image encoder,
guiding the method to focus on the forged image regions.

2.5. Training and Inference

To maintain the generalization and object understanding abili-
ties of SAM, inspired from the success of [10], we keep image
encoder parameters of SAM frozen throughout training pro-
cess, fining-tune only the remaining parameters.

To enhance the learning of compression artifact features, in
alignment with [13], we initialize the weights of CAE through
pre-training on double JPEG compression detection [9].

During inference process, we initially extract the Quantiza-
tion Table and DCT coefficients from JPEG images. In the case
of non-JPEG images, we directly compress them into JPEG
format using 100 quality factor and no chroma subsampling.



3. EXPERIMENTAL RESULTS

3.1. Datasets and Implementation Details

To validate the efficacy of our method, we conduct experiments
across various datasets.

IMD2020 dataset [14] encompasses 2,010 real forged
images sourced from the internet.

SPLICED COCO dataset [9] consists of 917,648 forged
images, enriched with diverse quantization tables.

NC16 SPLICING dataset [15], a part of National Insti-
tute of Standards and Technology (NIST) 2016, includes 288
forged images.

CARVALHO dataset [16] is used for image forgery localiza-
tion and detection, containing 100 images, which are mainly
tampered through splicing.

COLUMBIA dataset [17] comprises 180 forged images,
where the mask is derived from specific post-processing oper-
ations.

Our method undergoes training and testing on IMD2020
and SPLICED COCO. To assess the method’s generalizability,
we further test it on unseen NC16 SPLICING and COLUMBIA
datasets.

According to [10], we utilize Adaptive momentum Weight
(AdamW) optimizer [ 18] decay optimizer, with a batch size set
to 2. The initial learning rate is set to 2e-4, optimized through
Cosine decay. The experiments are implemented by PyTorch
on 2 Nvidia Tesla V100 GPUs.

3.2. Evaluation Metrics

We employ F1 as the fundamental metric to evaluate our
method, which focuses on the positive class, is well-suited
for evaluating the predictive performance in mask prediction
tasks, particularly when dealing with imbalanced datasets:

2TP
F1(G, P) = 2TP + FP + FN’ ®
where G represents the ground truth mask, P is the predicted
mask, TP denotes true positives, F'P represents false positives,
and FN stands for false negatives.

For the task of image forgery localization, the ability to
distinguish between original and tampered regions is crucial.
Therefore, we adopt permutation metrics [5] for evaluation.
Specifically, we calculate p — F'1, which is defined as:

p—F1(G,P) =max (F1(G,P),F1(G,P)), (9

where P represents the inverted predicted mask.

Additionally, we evaluate the mask prediction performance
using the average precision (AP), which measures the average
precision across various thresholds by computing the area un-
der the precision-recall curve. Similarly, we adopt permutation
metrics and calculate p — AP as:

p — AP (G, P) = max (AP (G,P),AP (G,ﬁ)) . (10)

The mean intersection over union (mloU) is a widely
adopted metric for evaluating the performance of image
forgery localization models. In the context of binary classifica-
tion, it is calculated as follows:

1 TP TP
mIoU(G,P):( + ),

2\TP+FP+FN TN+ FP+FN
(1D
where TN stands for true negatives.
To further evaluate the performance, we also employ per-
mutation metrics [5]. Specifically, we calculate p — mloU,
which is defined as:

p — mloU (G, P) = max (mIoU (G, P),mloU (G, F)) .
(12)

3.3. Comparison with the State-of-the-Arts

As demonstrated in Table 1, our method achieves the highest
metrics on NC16 SPLICING, CARVALHO, and COLUMBIA,
affirming its exceptional generalizability and proficiency in lo-
cating previously unseen images. Given that image forgery de-
tection necessitates determining whether each pixel is forged,
it is imperative to predict a hard mask. Specifically, regarding
p-F1, our method outperforms the best-performing method
CAT-Net [9] on all three datasets, reflecting a better balance
between precision and recall. It also excels in terms of p-AP,
providing a more comprehensive evaluation of our method’s
superiority. Since our method effectively extracts compres-
sion artifacts and edge artifacts, while inheriting the strong
object concept understanding of larger models, it can accu-
rately detect the forged areas, even for datasets that were not
encountered during training. This demonstrates the robust
generalization capabilities of our method.

As depicted in Table 2, our method outperforms the state-
of-the-arts on both IMD2020 and SPLICED COCO, empha-
sizing its superior abilities in splicing localization. Because
the Compression Artifact Extractor (CAE) and Edge Artifact
Extractor (EAE) have successfully extracted the compression
artifacts and edge artifacts in the spliced images, our method
can more easily locate the splicing region. Furthermore, our
method achieves the highest metrics on both NC16 SPLICING
and COLUMBIA, affirming its remarkable generalizability and
proficiency in locating previously unseen images.

Given the crucial role of the predicted forgery region mask
in our research, we have focused on ensuring its accuracy for
effective image repair. As the mask pinpoints the suspected
manipulated areas, it directly impacts the subsequent repair
process. We utilize LaMa [11] for image repair, which is
highly sensitive to the edge pixels of the image being repaired.



Table 1: Comparison of p-F1 and p-AP with the state-of-the-arts on NC16 SPLICING, CARVALHO and COLUMBIA. Best results

are highlighted in bold.  indicates reproduced results.

NC16 Splicing Carvalho Columbia

Method Venue

p-F1 p-AP p-F1 p-AP p-F1 p-AP
DBA [19] ICME "07 12.60 21.13 24.48 31.87 40.87 41.48
NOI1 [20] vC’ 09 17.66 25.51 36.27 37.23 48.13 54.77
ADQ [21] PR 09 17.01 14.74 40.84 37.89 41.22 37.71
NADQ [22] TIFS *12 12.69 7.91 24.54 14.87 48.14 36.21
CFA [23] TIFS °12 16.59 18.60 27.87 25.88 72.54 75.02
NOI2 [24] 1JCV ’14 14.26 13.18 25.84 23.74 43.28 46.70
CAGI [25] JVCIR "18 14.45 24.81 34.87 50.05 48.28 56.99
EXIF-SC [5] ECCV '18 40.72 51.60 43.98 53.01 78.05 94.50
ManTra-Net [6] CVPR ’19 27.85 33.38 41.68 52.86 50.97 64.66
Noiseprint [26] TIFS *19 21.51 39.89 42.12 76.79 50.42 80.85
CAT-Net [9] (Baseline) t 1JCV *22 55.62 68.76 78.79 86.41 93.97 95.87
SAM-ICE (Ours) 57.31 70.04 79.81 87.29 94.76 95.92

Table 2: Comparison of mloU and p-mloU with the state-of-the-arts and our variants on IMD2020, SPLICED COCO, NC16
SPLICING, and COLUMBIA. Best results are highlighted in bold. t indicates reproduced results.

IMD2020 Spliced COCO NC16 Splicing Columbia
Method Venue
mloU p-mloU mloU p-mloU mloU p-mloU mloU p-mloU

EXIF-SC [5] ECCV 18 - - - - 48.68 53.55 80.81 85.29
ManTra-Net [6] CVPR 19 - - - - 50.12 50.34 52.34 52.40
CAT-Net [9] (Baseline) } ICcv 22 76.00 76.53 93.87 93.87 68.41 69.18 83.05 90.99
SAM-ICE w/o CAE 76.35 76.69 94.04 94.04 72.24 72.65 83.27 90.80
SAM-ICE w/o EAE 75.94 76.47 93.80 93.80 69.37 70.52 82.27 87.99
SAM-ICE (Ours) 76.51 76.96 94.17 94.17 73.05 73.60 85.13 91.81

To overcome the challenges posed by LaMa’s sensitivity, we
implement a strategy of expanding the area around the forged
markings in the forgery mask during the repair process. This
method has proven to be effective, where we compare the
results of using the mask generated by our method and the
mask generated by CAT-Net [9]. Our method’s superior per-
formance in these datasets can be attributed to the accurate
prediction of the forgery mask during the mask prediction
phase. This accuracy enables a more precise localization of
the manipulated area, leading to better repair performance.

It is important to note that the forgery mask only serves to
distinguish between manipulated and authentic areas, and does
not determine the specific type of manipulation. Therefore,
in the repair process, we also employ two types of masks
derived from the permutation metric and select the best result
among them. Furthermore, our method has enabled us to frame
the estimation of noise statistics as an optimization problem
with a closed-form solution. We have developed this into an
effective method for estimating local noise statistics, which
further enhances the overall effectiveness of our image repair
method. This advance not only improves the quality of the
repaired images but also contributes to the broader field of

image manipulation detection and restoration.

3.4. Ablation Studies

Observing Table 2, the integration of only EAE-extracted fea-
tures into SAM [10], without guidance from compression arti-
fact features, results in a decrease in both mIoU and p-mIoU
compared to our method, and vice versa. Even when exclu-
sively incorporating EAE-extracted features, we consistently
outperform CAT-Net [9], showcasing the robust splicing edge
localization capability of EAE.

The experiments conducted on the unseen dataset validate
the efficacy and generalizability of our method. This affirms
that EAE proficiently extracts edge splicing forgery features,
and CAE adeptly captures compression artifact features. The
fusion of these two features significantly enhances splicing
feature extraction.

3.5. Results Visualization

Fig. 3 displays selected image splicing localization results, our
results primarily consist of green and blue sections, indicat-
ing greater accuracy, while CAT-Net [9] exhibits noticeable
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Fig. 3: Comparison of image forgery localization results. (c) and (e) Green, blue, red, and yellow denote true positives, true

negatives, false positives, and false negatives, respectively.
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Fig. 4: Visualization of attention map extraction by different
modules. (a) Input image, (b) Ground-truth mask, (c) Atten-
tion map extracted by CAT-Net, (d) Comparison of CAT-Net
predicted mask and ground-truth, (e) Attention map extracted
by CAE, (f) EAE, (g) and SAM-ICE, and (h) Comparison of
SAM-ICE predicted mask and ground-truth.

red and yellow sections, signifying more incorrect predictions.
This illustrates that our method, benefiting from the extraction
and fusion of forged edge artifact features and compressed
artifact features, is less affected by similar non-forged pixels,
resulting in enhanced forgery localization accuracy. Moreover,
our predicted mask is predominantly black in the real region,
whereas CAT-Net’s mask shows gray and white, emphasiz-
ing the robust confidence of our method. This observation
underscores the superior discriminability of our method.

Illustrated in Fig. 4, we visually inspect the attention of
the method to compare the region of interest during local-
ization. CAE and EAE modules focus on the spliced region
and the spliced edge of the image, respectively. After the
fusion module, the model accurately directs its attention to
the spliced region of the image. Conversely, due to the lack
of object understanding ability and relatively single-feature
extraction, CAT-Net [9] produces some erroneous predictions.
This underscores the effectiveness of the proposed modules.

4. CONCLUSIONS

This paper introduces a splicing forgery localization method
that Integrates Compression and Edge artifact features via
SAM (SAM-ICE). Edge Artifact Extractor (EAE) is employed
to extract forgery features introduced at the edges during im-
age splicing, while Compression Artifact Extractor (CAE) is
utilized to extract compression artifact features. The fusion of
these features is facilitated by the object understanding ability
of SAM, guiding the method in accurately locating splicing
positions within the image. Experiments substantiates the
effectiveness, robustness, and generalizability of our method.

However, our method relies on the assumption that high-
frequency artifacts are present at the edges of the forged re-
gions. This assumption may limit the model’s effectiveness
in scenarios where the frequency content at the edges of the
forged regions is low. In such cases, our method may strug-
gle to extract the forgery artifacts from the edges, potentially
leading to suboptimal prediction results. Therefore, as part of
our future research, we aim to explore methods for extracting
artifacts that are not only dependent on high frequencies, to
further improve the performance and robustness of our splicing
forgery localization method.
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